Fast Collocation Methods for High-Dimensional Weakly Singular Integral Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Discrete Collocation Method for Weakly Singular Integral Equations

Abstract. To find the approximate solutions of a weakly singular integral equation by the collocation method it is necessary to solve linear systems whose coefficients are expressed as integrals. These integrals cannot usually be computed exactly. We get the fully discrete collocation method when we approximate the integrals by quadrature formulas on nonuniform grid. In this paper an appropriat...

متن کامل

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

Approximate Solution of Weakly Singular Integral Equations by Iterative Methods

In present paper we elaborated the numerical schemes of iterative methods for an approximate solution of weak singular integral equations with logarithmic Kernel. The equation is examined in a pair of spaces. The results obtained could be used for any pair of the functional spaces where the problem of finding the solution of weak singular integral equations is correctly formulated problem by Ti...

متن کامل

collocation method for fredholm-volterra integral equations with weakly kernels

in this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎fredholm-volterra integral equations (fvies) are smooth‎.

متن کامل

A Nodal Spline Collocation Method for Weakly Singular Volterra Integral Equations

A collocation method based on optimal nodal splines is presented for the numerical solution of linear Volterra integral equations of the second kind with weakly singular kernel. Since the considered spline operator is a bounded projector we can prove that, for sequences of locally uniform meshes, the approximate solution error converges to zero at exactly the same optimal rate as the spline app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 2008

ISSN: 0897-3962

DOI: 10.1216/jie-2008-20-1-49